Facial feature point extraction method based on combination of shape extraction and pattern matching

نویسندگان

  • Kazuhiro Fukui
  • Osamu Yamaguchi
چکیده

In this paper, we propose a method for fast and accurate extraction of feature points such as pupils, nostrils, mouth edges, and the like from dynamic images with the purpose of face recognition. Accuracy of face extraction with these feature points used as criteria greatly affects the capabilities of face recognition methods based on pattern matching. This processing must be performed rapidly, considering the large number of recognition trials required for dynamic images and the requirements of real-time registration. In various extraction methods proposed in the past, steady extraction was difficult due to influences such as individual differences, expression variations, face direction or illumination variations, and so forth. These methods are far from satisfactory in terms of extraction accuracy and processing speed. The proposed method achieves high position accuracy at a low computing cost by combining shape extraction with pattern matching. In particular, it uses a separability filter to extract feature point candidates for pupils, nostrils, mouth edges, and the like. Next, it uses pattern matching based on the subspace method to select the correct feature points from the candidates. Results of testing facial images under various conditions using an evaluation system demonstrated that for 1700 static images the feature point extraction rate was 99%, and in the case of dynamic images the extraction rate for 9880 frames was 98% at a speed of 10 trials/s, without using hardware. © 1998 Scripta Technica, Syst Comp Jpn, 29(6): 49–58, 1998

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contourlet-Based Edge Extraction for Image Registration

Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems and Computers in Japan

دوره 29  شماره 

صفحات  -

تاریخ انتشار 1998